If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6400=-16t+800t^2
We move all terms to the left:
6400-(-16t+800t^2)=0
We get rid of parentheses
-800t^2+16t+6400=0
a = -800; b = 16; c = +6400;
Δ = b2-4ac
Δ = 162-4·(-800)·6400
Δ = 20480256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20480256}=\sqrt{2304*8889}=\sqrt{2304}*\sqrt{8889}=48\sqrt{8889}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-48\sqrt{8889}}{2*-800}=\frac{-16-48\sqrt{8889}}{-1600} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+48\sqrt{8889}}{2*-800}=\frac{-16+48\sqrt{8889}}{-1600} $
| d/10=3 | | 5x+3=8-2x. | | x(90-x)=180 | | 3(9(b)-3)=9(5(b)+5) | | 3-15x+2x+7=12-x-10 | | 2y3=2y-3 | | 7a-2a-a=8 | | x(40+7)=(8x)+(8x7 | | 6v+4=-50 | | 6v=4=-50 | | 86.4=7.2(-1.3-1.9x) | | -2.4+c/0.5=-7 | | 10(x+5)-9+8(x+5)=50 | | 9x^2-133=0 | | x/2=6/x+2 | | 16+6.5x=10+7.50x | | 16w+20=70+15w | | 5-4x=4x+12 | | x/7+9=-6 | | z/9-12=3 | | 4x^2-6x-32=0 | | 25t^2-70t+48=0 | | 9m-19=91 | | 3x^/2+43=139 | | 5x^/3+61=121 | | 0=-4.867x^2+4.564x+2.083 | | 3x+9-4x-12+5x=-19 | | 4x+3x=16x | | -2x-19=0 | | 6x-22=4x-2 | | 72/3y+11=15 | | a^+6/2=11 |